(1,3;1,4)-beta-D-glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages.
نویسندگان
چکیده
(1,3;1,4)-beta-D-glucans consist of unbranched and unsubstituted chains of (1,3)- and (1,4)-beta-glucosyl residues, in which the ratio of (1,4)-beta-D-glucosyl residues to (1,3)-beta-D-glucosyl residues appears to influence not only the physicochemical properties of the polysaccharide and therefore its functional properties in cell walls, but also its adoption by different plant species during evolution. The (1,3;1,4)-beta-D-glucans are widely distributed as non-cellulosic matrix phase polysaccharides in cell walls of the Poaceae, which evolved relatively recently and consist of the grasses and commercially important cereal species, but they are less commonly found in lower vascular plants, such as the horsetails, in algae and in fungi. The (1,3;1,4)-beta-D-glucans have often been considered to be components mainly of primary cell walls, but recent observations indicate that they can also be located in secondary walls of certain tissues. Enzymes involved in the depolymerisation of (1,3;1,4)-beta-D-glucans have been well characterized. In contrast, initial difficulties in purifying the enzymes responsible for (1,3;1,4)-beta-D-glucan biosynthesis slowed progress in the identification of the genes that encode (1,3;1,4)-beta-D-glucan synthases, but emerging comparative genomics and associated techniques have allowed at least some of the genes that contribute to (1,3;1,4)-beta-D-glucan synthesis in the Poaceae to be identified. Whether similar genes and enzymes also mediate (1,3;1,4)-beta-D-glucan biosynthesis in lower plants and fungi is not yet known. Here, we compare the different fine structures of (1,3;1,4)-beta-D-glucans across the plant kingdom, present current information on the genes that have been implicated recently in their biosynthesis, and consider aspects of the cell biology of (1,3;1,4)-beta-D-glucan biosynthesis in the Poaceae.
منابع مشابه
Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the poaceae.
Family GH16 glycoside hydrolases can be assigned to five subgroups according to their substrate specificities, including xyloglucan transglucosylases/hydrolases (XTHs), (1,3)-beta-galactanases, (1,4)-beta-galactanases/kappa-carrageenases, "nonspecific" (1,3/1,3;1,4)-beta-D-glucan endohydrolases, and (1,3;1,4)-beta-D-glucan endohydrolases. A structured family GH16 glycoside hydrolase database ha...
متن کاملEvolution and development of cell walls in cereal grains
The composition of cell walls in cereal grains and other grass species differs markedly from walls in seeds of other plants. In the maternal tissues that surround the embryo and endosperm of the grain, walls contain higher levels of cellulose and in many cases are heavily lignified. This may be contrasted with walls of the endosperm, where the amount of cellulose is relatively low, and the wall...
متن کاملCurrent challenges in cell wall biology in the cereals and grasses
Plant cell walls consist predominantly of polysaccharides and lignin. There has been a surge of research activity in plant cell wall biology in recent years, in two key areas. Firstly, in the area of human health it is now recognized that cell wall polysaccharides are key components of dietary fiber, which carries significant health benefits. Secondly, plant cell walls are major constituents of...
متن کاملIdentification and Deletion of Tft1, a Predicted Glycosyltransferase Necessary for Cell Wall β-1,3;1,4-Glucan Synthesis in Aspergillus fumigatus
Aspergillus fumigatus is an environmental mold that causes severe, often fatal invasive infections in immunocompromised patients. The search for new antifungal drug targets is critical, and the synthesis of the cell wall represents a potential area to find such a target. Embedded within the main β-1,3-glucan core of the A. fumigatus cell wall is a mixed linkage, β-D-(1,3;1,4)-glucan. The role o...
متن کاملThe Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family
An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β-glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examinatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant
دوره 2 5 شماره
صفحات -
تاریخ انتشار 2009